The Global Chassis Sector Report
AN ANALYSIS OF THE BRAKING, STEERING AND SUSPENSION MARKETS

JUNE 2015
BY DAVID SADDINGTON
CHAPTER 1 INTRODUCTION

1.1 Modules & systems: a definition
1.2 The passenger vehicle chassis

CHAPTER 2 EXECUTIVE SUMMARY

2.1 Braking
2.2 Steering
2.3 Springs and dampers
2.4 Roadmap

CHAPTER 3 KEY MARKET DRIVERS

3.1 CO₂ regulation driving change
3.2 CO₂ legislation in the major vehicle markets
3.2.1 Europe
3.2.2 North America
3.2.3 China
3.3 Upcoming CO₂ standards to 2020 and beyond
3.4 Materials and weight reduction
3.5 Increasing vehicle electrification
3.6 Global automotive production trends
3.6.1 European market
3.6.2 North American market
3.6.3 Chinese market

CHAPTER 4 BRAKING COMPONENTS, MODULES AND SYSTEMS

4.1 Brake foundation components and modules
4.2 Brake control systems
4.2.1 Antilock brake systems (ABS)
4.2.2 Electronic stability control (ESC)
4.3 Outlook & forecast to 2022
4.3.1 Electronic stability control
4.3.2 Electro-hydraulic braking (EHB)
4.3.3 Electro-mechanical braking (EMB)
4.3.4 Electro-mechanical park brake (EMPB)
4.3.5 Regenerative braking
4.3.6 Brake-by-wire
4.4 Outlook & forecast to 2022 – Light vehicle braking
4.4.1 Drum brakes
4.5 Future developments and innovation
4.6 Electronics and integration
4.7 Braking and collision mitigation
4.7.1 Collision avoidance
4.7.2 Collision mitigation braking systems (CMBS)
4.7.3 Forward collision warning (FCW)

CHAPTER 5 SUSPENSION AND DAMPING
5.1 Overview and general trends
5.2 Background
5.3 Suspension modules
5.4 Springs and dampers
5.5 Damping technology
5.5.1 Monotube dampers
5.5.2 Twin-tube dampers
5.5.3 Sensitive damping control
5.5.4 Air springs
5.5.5 BWI manual selectable ride
5.5.6 BWI Bi-State real time damping system
5.5.7 Active damping systems
5.5.8 Tenneco Continuously Controlled Electric Suspension
5.5.9 Tenneco Kinetic H2 CES system
5.5.10 ZF’s Continuous Damping Control (CDC)
5.5.11 Magneto-rheological damping
5.5.12 Mazda Skyhook Damping Suspension (M-SDS)
5.6 Future innovations
5.6.1 Electromagnetic regenerative suspension (EMS)
5.6.2 Predictive suspension
5.7 Outlook and forecast to 2022
5.7.1 Springs and dampers

CHAPTER 6 STEERING
6.1 Hydraulic Power Assisted Steering (HPAS)
6.2 Electro-Hydraulic Power Assisted Steering (EHPAS)
6.3 Electric Power Assisted Steering (EPAS)
6.4 Rear wheel steering
6.5 Active steering
6.6 Active collision avoidance steering
6.7 Drive-by-wire/fully electronic steering
6.8 Market players
6.9 Steering market outlook to 2022

CHAPTER 7 MANUFACTURERS

7.1 Bosch
7.2 BWI Group
7.3 China Automotive Systems (CAAS)
7.4 Continental Automotive
7.5 JTEKT
7.6 KYB Corporation
7.7 Nexteer
7.8 Magneti Marelli
7.9 Mando Corporation
7.10 NHK Spring
7.11 NSK
7.12 Tenneco
7.13 ThyssenKrupp Bilstein
7.14 TRW Automotive
7.15 ZF Group
7.16 ZF Lenksysteme (now referred to as Robert Bosch Automotive Steering GmbH)

CHAPTER 8 OEM SYSTEM TECHNOLOGY TRENDS – WHO TAKES WHAT AND WHY?

8.1 BMW
8.2 Fiat
8.3 Ford
8.4 General Motors
8.5 Honda
8.6 Hyundai
8.7 Jaguar
8.8 Land Rover
8.9 Mercedes-Benz
8.10 Porsche
8.11 Renault-Nissan
Contents

8.12 Toyota
8.13 Volkswagen Group

CHAPTER 9 MODULAR SOURCING TRENDS
9.1 Modular platforms becoming reality
9.2 Opportunities and risks

CHAPTER 10 TECHNOLOGY ROADMAP
10.1 Electronics
10.2 System integration and interaction
10.3 The intelligent chassis
10.4 Autonomous passenger cars
List of tables

TABLE 1 Current EU emission standards for passenger cars (ECE + EUDC chassis dynamometer test)
TABLE 2 China’s fuel consumption standards, 2005 to present (L/100km)
TABLE 3 Summary of European Parliament 2020 emissions target – key provisions
TABLE 4 CO₂ emissions and weight by manufacturer 2011 fleet with 2015 and 2020 CO₂ targets (passenger vehicles only)
TABLE 5 Light vehicle production forecast: Europe (2014–2022)
TABLE 6 Light vehicle production forecast: North America (2014–2022)
TABLE 7 Light vehicle production forecast: China (2014–2022)
TABLE 8 ESC demand by region (thousand units), 2014–2022
TABLE 9 Braking system demand (thousand units), 2014–2022
TABLE 10 Selection of 2014 Model Year vehicles fitted with ZF’s CDC
TABLE 11 Active & semi-active suspension demand (thousand units), 2014–2022
TABLE 12 EPAS demand by region to 2022 (thousand units)
TABLE 13 Hydraulic power steering demand by region to 2022 (thousand units)
TABLE 14 Unassisted & electro-hydraulic power steering demand by region to 2022 (thousand units)

List of figures

FIGURE 1 Comparison of global CO₂ regulations for passenger vehicles (NEDC gCO₂/km)
FIGURE 2 Impact of vehicle weight on fuel consumption
FIGURE 3 Lightweight material costs vs. weight advantages
FIGURE 4 Fleet ICE improvements & electrification requirement for 2020 & 2025 targets
FIGURE 5 2013 Regional share of global vehicle production (%)
FIGURE 6 LVP regional production trends to 2022
FIGURE 7 Global ESC demand, 2014–2022
FIGURE 8 Global braking system demand, 2014–2022
FIGURE 9 TRW’s EBC 460 Premium system
FIGURE 10 Bosch’s Electronic Stability Program
FIGURE 11 I-Ride suspension module
FIGURE 12 Monotube damper cutaway
FIGURE 13 Twin-tube damper cutaway
FIGURE 14 Sensitive damping control
FIGURE 15 Continental air spring system
FIGURE 16 Tenneco CES system
FIGURE 17 Tenneco Kinetic H2 CES
FIGURE 18 ZF’s Continuous Damping Control
FIGURE 19 BWI’s MagneRide system
FIGURE 20 Global active suspension demand (million units), 2014–2022
FIGURE 21 Changing profile of the global steering system market, 2005–2013
FIGURE 22 TRW rack mounted electric steering system
FIGURE 23 ZF Lenksysteme’s EPAS system with motor driving a second pinion gear
FIGURE 24 Global EPAS market share by 2012 revenue
FIGURE 25 2014 Infiniti Q50 drive-by-wire system layout
FIGURE 26 Global steering products market share by 2012 revenue
FIGURE 27 Demand by steering system type (thousand units), 2014–2022
FIGURE 28 Volkswagen’s MQB platform
FIGURE 29 Evolution of the modular platform
and performance requirements and test protocols for replacement braking components for road going motor vehicles and trailers. ECE R90 will apply to passenger vehicles from November 2016 and the regulation is likely to favour aftermarket OEM brake manufacturers who can afford the significant additional cost of testing.

2.2 STEERING

The growth in installation rates of electric power assisted steering (EPAS) has been rapid with a swift and decisive replacement of hydraulic power steering as the dominant technology within the past 10 years. In 2005 hydraulic steering claimed a 56.3% share of the global steering market compared to 25.8% claimed by EPAS. By 2014 those figures had almost reversed, with EPAS holding 67.8% of the global market compared to just 24.8% with hydraulic. The share held by unassisted and electro-hydraulic steering also lost out to EPAS, falling from 17.9% in 2005 to just 7.4% by 2014.

Looking forward to 2022, we will see EPAS continue to increase its market share. In the tough environment created by the tightening emissions targets manufacturers are scrambling to meet, EPAS’s contribution to fuel consumption savings of up to 6% plays a large part in its popularity. Another huge contributing factor is its relative low cost, and lower costs over the life of the vehicle, which also reduce warranty claims and leads to large overall cost savings to OEMs.

Through the 2000s, EPAS’s mainstream acceptance was held back by issues, including concerns around lack of steering ‘feel’ compared to hydraulic systems, which made EPAS unpopular with many drivers. However, improvements in software control technology have largely solved this problem, and in the last few years we have seen even manufacturers of traditional ‘drivers’ cars’, including Audi and BMW roll out EPAS across their ranges. By 2022, we anticipate that EPAS will be fitted to around 86% of the world’s new light passenger vehicles.

Full steer-by-wire systems came to market in the 2013 Infiniti Q50, which featured a ‘fail-operational’ redundant steering column, which is engaged automatically in the event of power failure. The acceptance and success of the Q50 will no doubt be closely monitored by other OEMs. However limited forms of autonomous vehicle control are also available from Mercedes-Benz and Audi. The 2014 Mercedes-Benz S-Class equipped with Intelligent Drive option of traffic-jam assist, allows the car to steer, brake and accelerate itself at speeds lower than 37 mph. Available first on the S-class sedan as a $2,800 option, Intelligent Drive is also offered on the re-engineered 2014 E-class lineup. Currently the take-up rate for Intelligent Drive on the S-class sedan is 50%. It falls to 15% for the E class. Audi has said it will have a traffic-jam function on the redesigned A8 flagship, due in 2017. Mercedes-Benz, General Motors, Nissan, Google and Volvo all have said they will have a self-driving car on the road by 2020.
KEY MARKET DRIVERS

3.1 CO₂ REGULATION DRIVING CHANGE

Today, CO₂ emissions targets are the single most significant factor that is driving change in all aspects of the automotive industry. It is fuelling a revolution in engine technology with internal combustion engine (ICE) downsizing and optimising, and adding urgency to increasing levels of vehicle electrification. The increased trend particularly in Europe and China for SUV ownership has brought a counter-intuitive effect in terms of CO₂ emissions due to their relatively larger mass. As a result there has been a strong emphasis on reducing vehicle weight with implications for all systems and their associated components.

3.2 CO₂ LEGISLATION IN THE MAJOR VEHICLE MARKETS

3.2.1 Europe

TABLE 1 Current EU emission standards for passenger cars (ECE + EUDC chassis dynamometer test)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Introduced</th>
<th>CO</th>
<th>HC</th>
<th>HC+NOx</th>
<th>NOx</th>
<th>PM</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euro 1</td>
<td>Jul-1992</td>
<td>2.72</td>
<td>–</td>
<td>0.97</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Euro 2</td>
<td>Jan-1996</td>
<td>2.20</td>
<td>–</td>
<td>0.50</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Euro 3</td>
<td>Jan-2000</td>
<td>2.30</td>
<td>0.2</td>
<td>–</td>
<td>0.15</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Euro 4</td>
<td>Jan-2005</td>
<td>1.00</td>
<td>0.1</td>
<td>–</td>
<td>0.08</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Euro 5</td>
<td>Sep-2009 (a)</td>
<td>1.00</td>
<td>0.1(b)</td>
<td>–</td>
<td>0.06</td>
<td>0.005(c)(d)</td>
<td>–</td>
</tr>
<tr>
<td>Euro 6</td>
<td>Sep-2014</td>
<td>1.00</td>
<td>0.1(b)</td>
<td>–</td>
<td>0.06</td>
<td>0.0045(c)(d)</td>
<td>6×10¹¹(c)</td>
</tr>
<tr>
<td>DIESEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euro 1</td>
<td>Jul-1992</td>
<td>2.72</td>
<td>–</td>
<td>0.97</td>
<td>–</td>
<td>0.140</td>
<td>–</td>
</tr>
<tr>
<td>Euro 2, IDI</td>
<td>Jan-1996</td>
<td>1.00</td>
<td>–</td>
<td>0.70</td>
<td>–</td>
<td>0.080</td>
<td>–</td>
</tr>
<tr>
<td>Euro 2, DI</td>
<td>Jan-1996(e)</td>
<td>1.00</td>
<td>–</td>
<td>0.90</td>
<td>–</td>
<td>0.100</td>
<td>–</td>
</tr>
<tr>
<td>Euro 3</td>
<td>Jan-2000</td>
<td>0.64</td>
<td>–</td>
<td>0.56</td>
<td>0.50</td>
<td>0.050</td>
<td>–</td>
</tr>
<tr>
<td>Euro 4</td>
<td>Jan-2005</td>
<td>0.50</td>
<td>–</td>
<td>0.30</td>
<td>0.25</td>
<td>0.025</td>
<td>–</td>
</tr>
<tr>
<td>Euro 5a</td>
<td>Sep-2009(a)</td>
<td>0.50</td>
<td>–</td>
<td>0.23</td>
<td>0.18</td>
<td>0.005(d)</td>
<td>–</td>
</tr>
<tr>
<td>Euro 5b</td>
<td>Sep-2011</td>
<td>0.50</td>
<td>–</td>
<td>0.23</td>
<td>0.18</td>
<td>0.0045(d)</td>
<td>6×10¹¹</td>
</tr>
<tr>
<td>Euro 6</td>
<td>Sep-2014</td>
<td>0.50</td>
<td>–</td>
<td>0.17</td>
<td>0.08</td>
<td>0.0045(d)</td>
<td>6×10¹¹</td>
</tr>
</tbody>
</table>

* Category M1 vehicles. For Euro 1 to 4 vehicles greater than 2,500kg were type approved as Category N1 vehicles
(a) Sept 2010 for all M and N vehicle weight categories
(b) NMHC limit = 0.068 g/km
(c) Applicable only to vehicles with DI engines
(d) 0.0045 g/km using the PMP measurement procedure
(e) After 30th Sept 1999 vehicles with DI engines had to meet the IDI limits

Source: ICCT
5.7 OUTLOOK AND FORECAST TO 2022

5.7.1 Springs and dampers

FIGURE 20 Global active suspension demand (million units), 2014–2022

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>989</td>
<td>1,171</td>
<td>1,372</td>
<td>1,578</td>
<td>1,784</td>
<td>1,985</td>
<td>2,195</td>
<td>2,441</td>
</tr>
<tr>
<td>Europe</td>
<td>2,935</td>
<td>3,065</td>
<td>3,230</td>
<td>3,466</td>
<td>3,680</td>
<td>3,866</td>
<td>4,018</td>
<td>4,173</td>
</tr>
<tr>
<td>North America</td>
<td>2,287</td>
<td>2,420</td>
<td>2,582</td>
<td>2,752</td>
<td>2,902</td>
<td>3,056</td>
<td>3,183</td>
<td>3,313</td>
</tr>
<tr>
<td>Japan & Korea</td>
<td>1,657</td>
<td>1,691</td>
<td>1,705</td>
<td>1,698</td>
<td>1,707</td>
<td>1,732</td>
<td>1,755</td>
<td>1,795</td>
</tr>
<tr>
<td>South Asia</td>
<td>117</td>
<td>148</td>
<td>184</td>
<td>224</td>
<td>266</td>
<td>311</td>
<td>357</td>
<td>407</td>
</tr>
<tr>
<td>South America</td>
<td>107</td>
<td>122</td>
<td>137</td>
<td>152</td>
<td>171</td>
<td>194</td>
<td>217</td>
<td>239</td>
</tr>
<tr>
<td>ROW</td>
<td>49</td>
<td>58</td>
<td>67</td>
<td>77</td>
<td>88</td>
<td>99</td>
<td>109</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>8,143</td>
<td>8,676</td>
<td>9,276</td>
<td>9,947</td>
<td>10,599</td>
<td>11,242</td>
<td>11,835</td>
<td>12,487</td>
</tr>
</tbody>
</table>

Source: ABOUT Automotive

Despite advancements in active and semi-active suspension systems over the past ten years, the fundamental challenge for manufacturers remains balancing the level of safety, comfort, and performance the customer expects, with the price they are willing to pay. While active suspension has been on the agenda of vehicle manufacturers for a long time now, complexity and costs have limited the uptake of more advanced active suspension systems beyond the luxury/performance end of the market. Likewise energy demand has proved a barrier while mainstream vehicles operate with 12V circuits.

What we are seeing at the moment is that sensors developed for other vehicle features are reducing the potential costs of introducing active suspension technologies, at the same time that simpler systems are slowly beginning to
The Global Chassis Sector Report
An analysis of the braking, steering and suspension markets

This exclusive new report from ABOUT Automotive concentrates on three of the most important areas within the automotive chassis sector, providing both an up-to-date technological assessment, as well as market analysis and forecasts for:
• Braking components, modules and systems
• Suspension and damping systems
• Steering systems

Chassis sector supplier profiles
Concise profiles for each of the following chassis sector suppliers are included within the report:
• Bosch
• BWI Group
• China Automotive Systems
• Continental Automotive
• JTEKT
• KYB Corporation
• Nexteer
• Magneti Marelli
• Mando Corporation
• NHK Spring
• NSK
• Tenneco
• ThyssenKrupp Bilstein
• TRW Automotive
• ZF Group
• Robert Bosch Automotive Steering GmbH

Comprehensive study addressing the key issues
The report addresses the critical issues facing the automotive chassis sector, and is broken down into eight major sections:
• Key market drivers
• Braking components, modules and systems
• Suspension and damping systems
• Steering systems
• Chassis sector supplier profiles
• OEM system technology trends
• OEM modular sourcing trends
• Technology roadmap

The report defines and examines the key components, systems and modules that make up the chassis of a modern car, with specific regard to market usage, technological trends and forecast developments. This includes mainstream, mass-market technology, as well as innovative and advanced technology where appropriate in each product area.

In addition, the report analyses the approach of each supplier to the market, including its role within the emergence of innovative technologies. Likewise, the research provides an analysis of the technology and sourcing trends apparent among the major global carmakers.

Data coverage
The report includes detailed volume demand forecasts (by region to 2022), for each of the three main sectors covered within this report. Market share analysis for EPS and Steering products is also included. Forecasts are provided for:
• ESC
• EPS
• Braking (Hydraulic & EHB/EMB)
• Active & semi active suspension
• Unassisted & EH power steering

Published: June 2015 Price: £495 No. pages: 100 Format: PDF

ORDER FORM

1. Purchase Information
 I would like to purchase
 The Global Chassis Sector Report: An analysis of the braking, steering and suspension markets
 Quantity: 1
 Price*: £495
 Total: £495

2. Personal details
 (Please attach your business card or complete the following in capitals)
 Name (Mr/Mrs/Ms/Dr)
 Job title
 Company name
 Address
 Zip/postcode
 Country
 Nature of business
 Tel
 Fax
 E-mail

3. Payment method
 I enclose a cheque for £ payable to
 mastercard
 Visa
 AmEx
 Account number
 Name
 Valid from
 Signed
 Expiry date
 Please charge £ to my

4. Please send your order to
 ABOUT Publishing Group Limited, 29 Barnfield Road, Harpenden, Hertfordshire, AL5 5TH, United Kingdom.
 Telephone: +44(0)7980 255253
 e-mail: sales@aboutpublishing-auto.com • www.aboutpublishing-auto.com

*Reports are supplied electronically as a PDF.

The above prices do not include VAT. Customers in EU member countries may be liable to pay VAT if their Registration Number is not supplied. Please enter your EU Registration Number (VAT/TVA/BTW/MOMS/MWST/IVA/FPA) below:
