
THE BLUEPRINT FOR TOMORROW’S AUTONOMOUS MOBILITY LANDSCAPE
CHAPTER 1 EVOLUTION OF AUTOMOTIVE SAFETY
 1.1 Introduction
 1.2 Historical evolution of vehicle safety
 1.3 Synergies of in-vehicle safety systems: Active vs. Passive

CHAPTER 2 STATUS QUO: SAFETY REQUIREMENTS & REGULATIONS
 2.1 Philosophy of integrated safety
 2.2 Regulatory implications of active safety
 2.3 Euro NCAP’s advanced ratings
 2.4 IIHS’ vehicle classification

CHAPTER 3 SENSOR FUSION: A TECHNOLOGICAL OVERVIEW
 3.1 Why perception in a pre-crash scenario is crucial
 3.2 RADAR
 3.3 Vision-based systems (cameras)
 3.4 LiDAR
 3.5 Ultrasonic sensors
 3.6 Wheel speed sensors
 3.7 Ergonomics of active safety systems: role of HMIs

CHAPTER 4 ADAS & ACTIVE SAFETY APPLICATIONS
 4.1 Longitudinal driving assistance
 4.1.1 Adaptive Cruise Control (ACC)
 4.1.2 Forward Collision Warning (FCW)
 4.1.3 Rear parking assist/reversing assist
 4.2 Lateral driving assistance
 4.2.1 Lane Departure Warning (LDW)
 4.2.2 Lane Keeping Assist (LKA)
 4.2.3 Blind Spot Detection (BSD) with Cross Traffic Alert (CTA)
 4.2.4 Traffic Sign Recognition (TSR)
 4.3 Vulnerable user monitoring
 4.4 Night Vision (NV)
 4.5 In-vehicle Driver Monitoring (DM)

CASE STUDY: AUTONOMOUS EMERGENCY BRAKING (AEB)
 What is AEB?
 How does it work?
How effective are AEB systems?
Limitations and scope of improvement
Developments around AEB

CHAPTER 5 ACTIVE SAFETY DOWN THE LINE
 5.1 Active safety meets V2X: cooperative ITS
 5.2 Active safety for commercial vehicles
 5.3 Regulatory work underway
 5.3.1 Anti-Lock Braking (ABS) and Electronic Stability Control (ESC)
 5.3.2 Braking Assistance system (BA)
 5.3.3 Tyre Pressure Monitoring Systems (TPMS)
 5.3.4 Emergency Calls (eCall)
 5.4 Active safety challenges: what’s holding us back?
 5.4.1 Environmental detection and perception
 5.4.2 Development of infrastructure
 5.4.3 Human factors: keeping the driver in the loop
 5.4.4 Testing and validation
 5.4.5 Demonstration of safety, reliability and robustness
 5.4.6 Consumer acceptance

CHAPTER 6 TOP AUTONOMOUS DRIVING & ACTIVE SAFETY PROJECTS OF AUTOMOTIVE COMPANIES
 6.1 Introduction
 6.2 Volvo’s IntelliSafe
 6.3 Mercedes-Benz’s PreSafe
 6.4 Subaru’s EyeSight
 6.5 Toyota’s Safety Sense
 6.6 Audi’s PreSense
 6.7 BMW’s City Brake
 6.8 Honda’s SENSING
 6.9 General Motors’ Super Cruise

REFERENCES
List of tables

TABLE 1 Phase model for driving safety
TABLE 2 Features of automotive grade cameras

List of figures

FIGURE 1 Forward collision warning system
FIGURE 2 Mercedes-Benz accident research analysis
FIGURE 3 The ‘integrated’ safety model
FIGURE 4 Euro NCAP ratings distribution (2014 onwards)
FIGURE 5 Sensors used in Active Safety
FIGURE 6 Automotive Grade Radar (77 GHz)
FIGURE 7 Driver status monitor
FIGURE 8 LiDAR evolution
FIGURE 9 Ultrasonic proximity sensor
FIGURE 10 Wheel speed sensor
FIGURE 11 HMI demonstrating adaptive cruise control
FIGURE 12 Adaptive Cruise Control functional diagram
FIGURE 13 Cooperative ACC system
FIGURE 14 Forward Collision Warning functional diagram
FIGURE 15 Rear Parking Assist system
FIGURE 16 Lane Departure Warning system
FIGURE 17 Lane Keeping Assist in operation
FIGURE 18 Blind spot detection with rear-cross traffic alert
FIGURE 19 Traffic Sign Recognition with speed adaptation
FIGURE 20 Pedestrian detection with ‘auto-brake’
FIGURE 21 Pedestrian detection with night vision technology
FIGURE 22 In-cab Facial Monitoring
FIGURE 23 AEB working principle
FIGURE 24 ‘City Safety’ AEB system
FIGURE 25 Euro NCAP and AEB system
FIGURE 26 V2V & V2I systems
FIGURE 27 Two-truck platooning
FIGURE 28 Electronic Stability Control
FIGURE 29 TPMS active
FIGURE 30 eCall operation
FIGURE 31 Intellisafe system demonstrating surround-view
FIGURE 32 PreSafe's brake assist application
FIGURE 33 EyeSight featuring two stereo cameras
FIGURE 34 Automatic high beam
FIGURE 35 PreSense enabled in A4 model
FIGURE 36 City Braking
FIGURE 37 Honda SENSING technology
FIGURE 38 Super Cruise ADAS technology
2.1 PHILOSOPHY OF INTEGRATED SAFETY

As explained in chapter 1, the process of vehicle safety does not start after an actual crash has occurred. Nowadays, safety standards are being designed to take into consideration accident avoidance and mitigation techniques in all phases of driving. If we compare the performance of vehicles on the market just a couple of years ago with that of current vehicles, the progress made in this discipline is stark.

Before we discuss the implications of different phases of driving on vehicle safety requirements, it is imperative to understand those phases. Werkmeister et al. in a paper titled 'A Balanced Active & Passive Safety Concept for New Vehicle Generation' explained various driving phases. A simplified version of their phase model along with safety requirements has been shown in Table 1.

Table 1: Phase model for driving safety

<table>
<thead>
<tr>
<th>Phase</th>
<th>Philosophy</th>
<th>Safety Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1: Before driving</td>
<td>The driver is alerted beforehand about the on-road situation. The information can be obtained by on-board sensors and infotainment apps.</td>
<td>- Imminent traffic.
 - Alternative routes.
 - Weather report.
 - Vehicle health report.
 - Seating position, mirror adjustment etc. according to route.</td>
</tr>
<tr>
<td>Stage 2: Normal driving</td>
<td>Make driving stress free with dynamic and continuously monitor the ambient environment.</td>
<td>- Distraction-free Human Machine Interface (HMI).
 - Advanced lighting option (if visibility is low).
 - Advanced cruise control (ACC).
 - Windshield de-icing options (in snowy weather).
 - Suspension control, heading control etc.</td>
</tr>
<tr>
<td>Stage 3: Warning phase</td>
<td>Drivers are informed about any safety deficit in a timely manner and required to take necessary action to avoid any accident.</td>
<td>- Real-time driver feedback.
 - Steep cornering.
 - Over-speeding.
 - Lane diversion.
 - Harsh braking/acceleration.
 - Entering/leaving tunnel.</td>
</tr>
<tr>
<td>Stage 4: Pre-crash phase</td>
<td>Sensors detect a high probability of an imminent crash and intervene autonomously, without requiring any explicit action from driver.</td>
<td>- Activate restraint systems.
 - Adjustment of belt configuration, seat positions.
 - Pedestrian detection system.</td>
</tr>
<tr>
<td>Stage 5: CRASH phase</td>
<td>All sorts of occupant safety systems are activated.</td>
<td>- Multiple airbags.
 - Vehicle crashworthiness.
 - Pedestrian protection system.
 - Anti-whiplash systems.
 - Child protection systems.
 - Padded dashboards.
 - Pop-up dashboards.
 - Contact adhesives (patent Google).</td>
</tr>
<tr>
<td>Stage 6: Post-crash phase</td>
<td>Rescue measures are taken to deal with the secondary impacts of the accident.</td>
<td>- eCall.
 - Fire suppression.
 - Tank integrity.
 - Roadside assistance.</td>
</tr>
</tbody>
</table>

Source: Werkmeister et al./ABOUT Automotive
3.1 WHY PERCEPTION IN A PRE-CRASH SCENARIO IS CRUCIAL

The basic premise for any pre-crash perception system is to make use of more anticipatory and descriptive sensors than the current accelerometer-based approach to detect a collision beforehand. The system then communicates this information to the vehicle and its occupant protection systems and takes appropriate actions to prevent the collision from happening.

Koopman et al. in a paper titled ‘Pre-Crash Sensing Countermeasures & Benefits’ categorized the traditional pre-crash sensing systems in two forms; reversible and irreversible.

The first category encompasses features that are activated just before a potential crash, but usually have the capability of being reset in case the crash does not occur. Examples include airbag pre-arming, non-pyrotechnic seat belt pre-tensioning, bumper extension or lowering, and emergency autonomous braking.

FIGURE 5 Sensors used in Active Safety

Source: TRW
for monitoring different states of alertness. A variety of metrics have been proposed and refining the most relevant metrics for fatigue monitoring is likely to be a focus of future research for aftermarket system development.

Some vehicle manufacturers are using CAN-based drowsiness monitors using a wide range of vehicle control measures. These systems may have a place in the market as an OEM offering to be used by automotive manufacturers and as an aftermarket option to fleets.

The costs associated with driver drowsiness and distraction devices vary substantially ranging from $150 to $2,000 (Forseman et al.).

CASE STUDY

AUTONOMOUS EMERGENCY BRAKING (AEB)

WHAT IS AEB?

AEB systems are part of advanced ‘pre-emptive’ safety technologies that takes the functionality of a collision warning system to the next level. As previously explained in Chapter 4, FCW systems monitor the ambient traffic ahead of the road and issues a warning if a collision is detected. AEB systems add the ‘mitigation’ part on top of FCW systems and intervene by braking the car automatically should the driver fail to either acknowledge the warning or take necessary action. Euro NCAP further simplified AEB systems by defining each of its elements on its official website;

- **Autonomous** – the system acts independently of the driver to avoid or mitigate the accident;
- **Emergency** – the system will intervene only in a critical situation; and
- **Braking** – the system tries to avoid the accident by applying the brakes.

AEB systems improve safety in two ways: firstly, they help to avoid accidents by identifying critical situations early and warning the driver; and secondly they reduce the severity of crashes which cannot be avoided by lowering the speed of collision and, in some cases, by preparing the vehicle and restraint systems for impact.

HOW DOES IT WORK?

Generally, AEB systems use millimetre wave radar, stereo cameras (mostly), LiDAR alone or a combination of any two or three of these to monitor their environment and detect potential threats. The ‘perceived’ information is then fed to complex algorithms that analyse the sensor data to identify collision partners by collating it with the vehicle’s motion data, their relative position, speed and therefore the collision threat (see Figure 23). The speed range within
As active safety goes from niche to mainstream, intelligent connectivity and digitisation both inside and outside the vehicle will become even more important than it is today. The convergence of high-speed connectivity and sensor processing will bring consumers one-step closer to fully automated driving.

This exclusive report from ABOUT Automotive assesses the most influential changes in the automotive industry with the advent of active safety systems. It also analyses how these systems will work in harmony with other vehicular systems to make high levels of autonomy a reality.

Report coverage

- Chapter 1: Evolution of automotive safety
- Chapter 2: Status quo: safety requirements & regulations
- Chapter 3: Sensor fusion: A technological overview
- Chapter 4: ADAS & active safety applications
- Chapter 5: Active safety down the line
- Chapter 6: Top autonomous driving & active safety projects of automotive companies

This report provides fresh, unbiased insight in a number of areas, including:

- An analysis of the 6 key challenges that could hamper the development and implementation of active safety systems;
- Coverage of the 8 leading OEM autonomous driving & active safety projects;
- An assessment of the global regulatory environment, and the implications for active safety development;
- Discussion about connectivity between one vehicle and another (V2I) and between a vehicle and the infrastructure (V2I);
- An examination of the fusion of sensor systems that now constitute active safety principles and the innovations that have been recently introduced;
- Developments in ADAS and active safety applications; and
- A detailed case study on Autonomous Emergency Braking (AEB).

Published: December 2016 Price: £495 (single-user licence) No. pages: 70 Format: PDF

ORDER FORM

1. **Purchase Information**
 - I would like to purchase: **Active safety systems: 2017 edition**

2. **Personal details**
 - (Please attach your business card or complete the following in capitals)
 - Name (Mr/Mrs/Ms/Dr)
 - Job title
 - Company name
 - Address
 - City
 - Zip/postcode
 - Nature of business
 - Tel
 - Fax
 - E-mail

3. **Payment method**
 - I enclose a cheque for £
 - Corporate multi-user licence
 - Visa
 - MasterCard
 - AmEx
 - Please charge £ to my
 - Please send me a proforma invoice (Reports will be sent on receipt of payment)

4. **Please send your order to**
 - ABOUT Publishing Group Limited, 29 Barnfield Road, Harpenden, Hertfordshire, AL5 5TH, United Kingdom.
 - Telephone: +44(0)7980 255253
 - e-mail: sales@aboutpublishinggroup.com • www.aboutpublishing-auto.com